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We consider a plane supersonic jet of ideal gas. flowing out of a nozzle 
into a region of low pressure with uniformly distributed velocity at the 
exit. 

The theoretical study of such a gas flow, with the additional condi- 
tion that the flow is steady and irrotational, was originally carried 
out by Prandtl [ 1 I. Using the method of small disturbances Prandtl con- 
firmed the experimental result that the jet has a periodic structure for 
small drops in the pressure. 

Then, Prandtl’s solution was improved in a number of articles. In most 
cases approximate solutions were obtained having periodic structures and 
they did not contain either the surface of discontinuity, or the singu- 
larities which lead to the necessary introduction of such surfaces. In 
particular. in [ 2 1, continuous periodic solutions were obtained by a 
method analogous to that of Khristianovich [3 1. 

Yet the literature suggested that more exact solutions must contain 
the surface of discontinuity, otherwise at some distance from the exit 
of the nozzle there arises a limit line [4 I. The analytical proof of 
this assertion can be found in [ 5 I. Through the method of Lin [6 1 it 
was shown there that under the condition of a sufficiently small drop in 
pressure there does appear in the jet a limit line as the envelope of the 
straight-line characteristics, which converge before they can reach the 
free surface. The flow in such a jet, clearly, must have an aperiodic 
character. 

We remark, at this point, that for the calculated case of supersonic 
efflux the impossibility of continuous flow at a sufficiently large dis- 
tance from the center of the nozzle and the aperiodicity of the jet were 
established in [ 7 I. 
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In the following article the problem of Prandtl on the supersonic 

efflux of gas from a plane nozzle into a region of lower pressure will 

be solved by the method presented in [S 1. Problems connected with the 

disappearance of shock waves in the jet are considered. 

I.. We take the equations for the velocity potential r$ and the stream 

function II, to be 

Here K,(t) is the Chaplygin function; ( and n are characteristic vari- 

ables; t is the magnitude of the velocity vector; and 8 the angle of the 

velocity vector with the x-axis. 

If we take 

K, (t) = (n ton rnt)4 (1.2) 

then for 4 and $ we obtain the usual solutions in the form 

cp = n {- m If1 (El + fz. (dl + + tam m (E + rl) Vl’ (E> + f2’ Cdl) 

$ = n-l Im I-- fl (9 + f2 (r)l + f Cot m G + r>t-fi'(E) + fa'(~)I) (1.3) 

where f,(e) and fz(q) are arbitrary functions, subject to boundary con- 

ditions, and n and m are arbitrary constants [8 1. 

With condition .(1.2) for the velocity V, density p and Mach number M 

we have 

v (t) = 
Bn2tanmt 

A (m tanmt sin t + cos t) + (mtm int cos t -sin t) (I.41 

PW = : 
A (mtanmt sin t + cost) + (mtanmt cos t -sin t) 

n’anmt [A (tnmt sin t + m cos t) + (tmmt cos t - m sin t)] (1.5) 

M (4 = 1/l + P'K, (1.6) 

where A and B complete the set of arbitrary constants. These may be 
suitably chosen, as well as the constants m, n, to obtain approximations 

of the degree desired c8 I. 

From (1.41, (1.5) and (1.6) we establish that p = 0, M= 00 and the 

maximum value of velocity is reached at t = r/2m. 
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We further note the positivity of the derivative dv/dt. This can be 

easily derived from the usual relation 19 1 

Fig. 1. 

dv/dt = u/pm (1.7) 

The flow under consideration is 

evidently symmetrical with respect to 

the x-axis, passing through the center 

of the exit in a direction parallel to 

the walls of the nozzle at the exit. 

Therefore, it is sufficient to limit 

the study to the upper half of the 

flow alone. 

The set of characteristic regions, 

in which it is necessary to define the functions required, f,(E) and 
f2(v), are represented in the physical plane of the flow on Fig. 1 and 

in the plane of the variables t,B on Fig. 2. Let corresponding points on 

Figs. 1 and 2 take on identical notations. In the plane t,8 these regions 

are bounded with segments of the lines 8 = 0 and t = t2 and with segments 

of the characteristics 

E = El = '/a @a - %) = l/z t,, rl = rll = 'ia (tz + fJ,> = '/z t, 

E = Ez = l/z (tz + 0,) = '/zt3, r = rl2 = l/2 @2 - 02) = l/P t, 

(1.8) 

where tl is the value of the magnitude of t at the exit of the nozzle, 
t2 is the constant value of t on the surface of the jet and in the region 

P,Pq,, and P,P,P,, and tg is the constant value of t in the region 
P,P,P,. e2 is the angle characterizing the direction of the flow in the 

region P,P$,. 

The characteristic regions in Figs. 1 and 2 are shown for a flow in 

which the parameters t, and t2 correspond to the condition 

2t,-tt,<n/2m (t3 = 2t, - tl) (1.9) 

We shall restrict ourselves in the beginning to the examination of 

the flow corresponding to this condition (1.9). 

2. Coming now to the solution of the problem, we turn first of all to 

the result of [lo 1. In this paper the question of the determination of 

the stream function on a cross-characteristic in a simple wave is 

examined. This leads to the following result: if on one of the cross- 

characteristics in the simple wave the function t,P is known, then the 

values of $ on the second cross-characteristic can be expressed by the 
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formula 

* = 9,” + l.&,-” (2.1) 

where E_” is a quantity which remains constant on each characteristic; the 
continuous transition from one characteristic to the other carries with 
it a continuous change in /A. Moreover, if the simple wave is centered, 
then on the cross-characteristic 

where Q is the value of the stream func- 
tion at the center. 

In our problem, the pressure in the ex- 
terior region is below the pressure at the 
exit of the nozzle. Therefore, at the edge 
of the nozzle there arises a centered 
rarefaction wave. letting $J = Q at the 
point p,, and on the surface of the jet, 
and taking $ = 0 on the axis of symmetry, 
we get, according to (2.2) and (1.21, the 
value of the stream function on the cross- 
characteristic P,P, in the form 

Next, it is necessary to determine fl([) and fz(n) in the region 
PIP2P3 (region (0)) from the known values (2.3) of the function $ on the 
characteristic PIP2 and the condition + = 0 on the axis of the symmetry. 
‘lhe solution of this boundary-value problem for the function K,(t) assumed 
in (1.2) can be found in [ 11 1. In the problem considered here we get 

(2.4) 

f,@) (8 = f (51, I,(O) (7) = f (rl) (i(E) = - “I cos 2m (E + ra), 4 = Zmc;:+& ) 

We next go on to region P4P5P6 ( region (l)), bounded in the plane 
t + 8 by segments of the characteristics 5 = t2, 3 = q1 and a segment of 
the line t = t2. Here, it is necessary to satisfy two conditions: in the 
first place, on the cross-characteristic P4PS the function $ must attain 
the value determined from Formula (2.1); and, secondly, on the free sur- 
face PkJ’a the relation + = Q must hold. 

The solution of the boundary-value problem with these given conditions 
on the characteristic and the free surface has also been given in [ 11 I . 
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According to the result of that paper, it is natural to represent the 
desired solution in the form 

11(l) (E) = f (6) 

(2.5) 

where kz = 2m tan (mt,) and C, and C, are constants which are determined 
from the boundary conditions. 

Satisfying the condition on the free surface II, = Q and then the con- 
dition on the characteristic P4P5, we find 

C, = 2q co9 mtl, 

As a result of the 
sented in the form 

C, = - qekz”l (cos 2mt, + 2 cos%t, + cos 2mt.J (2.6) 

integration the function f2(l)(v) can be repre- 

f,(l) (11) = q {cos 2m (Q - q) - 

- 4e”z (in) cos mtl cos mt, cos m (tz - tl) + 2 cos2 mt,} 

In the region P,P,P9 (region (211, taking into account symmetry 
respect to the x-axis, we easily obtain 

flt2) (9 = f&l) (E)! /p (7) = f,(L) (q) 

P-7) 

with 

(2.8) 

Ihe values of $I on the cross-characteristics PSP6 and P,P, are ob- 
tained by the relation (2.1). 

It will be shown below that the solution for simple waves given on 
the cross-characteristic P8p9 always contains a singularity, the limit 
line, the existence of which indicates the impossibility of further ex- 
tending a continuous potential flow in the jet. However, in the plane 
tf3 no such singularity, as is known, appears. Therefore, it is possible 
formally to continue the solution, starting with the condition 

tit, 0) = 
$* 

In the 

where 

0, titp 0) = Q and using the relation (2.1) for the function 

region P,,P,,P,, (region (3)) by analogy with (2.5) we obtain 

fit3) (8 = fl@) (E), f9c3) (q) = f (q) + C,e-fisa + C, i (2.9) 

C, = 4q ~09 mtl, C, = - 4qekz.Ql cos mtl cos mt, cos m (tz - tl) (2.10) 

In region P,,P,,P,5 (region (4)) the desired functions f,‘4’(t) and 
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f2 (4)(7]) are determined easily in the same way as for the functions 
(2.8) in region P7PsP9 

jl(4) (E) = f (EJ + c$?-h’z 5, JJ4) (rl) = f (r) + Gedkz? (2.11) 

Comparing (2.4) and (2.11), one finds a solution is obtained which 
cannot be periodic since C, f 0. 

3. We now show that in the jet limit lines always occur. For that 
purpose we consider the solution in a region, abutting the character- 
istics P,P, and P,P,,, where the appearance of the limit line seems to 
be most probable. 

The flow in that special region is represented by simple waves SO 

that the usual method of investigation, which consists of studying the 
Jacobian A = a($, +)/d<u, 0), is not acceptable here. In this case it is 
necessary to make use of another condition for the existence of the 
limit line, which may be obtained for simple waves from [ 12 1. It con- 
sists of satisfying the equation 

4e’ (L 7) = 0 (3.1) 

for points of the plane e, q, the images of which in the physical plane 
of the gas flow can be found on the limit line. 

In order that we may verify that condition (3.1) is fulfilled we will 
find the values of the function +e’(t, q) for the points P9(c = cl, 

77 = 71~1, P&= t2, q = 71~) and PI1(c = cfl, 71 = p2). If it appears that 
two of the defined quantities have different signs, then the fulfilling 
of condition (3.1) and, consequently, the existence of a limit line will 
be guaranteed. 

On the characteristics PSp9 and P,$,, the function Ic6’(6, 77) does 
not have a discontinuity. Therefore, for the determination of the value 
of this function at P, use is made of (2.8), and to determine the value 
at P,, and P,, solution (2.9) is used. 

lbe expression for +c’(&, on the basis of (1.‘3), can be represented 
in the convenient form 

w 
-Kg= - 2n silnB ml [m!a’ (rl) - m cos 2mtfr’ (E.) + F fi” (E)] (3.2) 

‘Ihe expression for the derivative at the point P, has the form 

all; 
( ) ag P, 

= ‘9 cot mt, [ 1 + 2eka h--rrd tm mt, sin 2m (tz - tl)] (3.3) 

From this it is evident that the function considered is always positive 
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at P, (tz > tl). At the point P,, we have 

w ( > -%- P,, 

= T $2 (?i--riz) cot mt, TV mt, sin 2m (tz - tl) (3.4) 

‘Ihis expression takes on only positive values for the same reason as 
in (3.3). At the point P,, we have 

(3.5) 

Unlike the expressions in (3.3) and (3.44, the derivative at P,, takes 
on essentially negative values, because T]~ > v2. 

‘Ihe analysis which has been carried out 
shows that the condition for the existence of 
the limit line in the simple wave on the 
cross-characteristic PsP9 is satisfied and it 
follows that continuous potential flow at 
some finite distance from the end of the nozzle 
is impossible. ‘Ihis conclusion is correct both 
for small pressure drops and for larger ones. 

Thus, the condition in [5 1 on the size of the 
pressure drops is removed. It appeared only 
because of the method of proof used in [ 5 1 . 

~j(t=t,;e=oJ 

Fig. 3. 

Note, however, that for large pressure drops the continuous solutions 
obtained can lose their physical meaning even earlier. As an example we 
consider the solution for the region P4P5P6 and we show that for a 
sufficiently large value of t2 on some line in this region there will 
necessarily be satisfied the condition for the existence of a limit line, 
A= 0. 

With the help of the basic equations C9 1 

(3.6) 

which are equivalent to the systems (1.11, the Jacobian A can be pre- 
sented in the form 

(3.7) 

From this it follows that A< 0 on PdPs, where $I= const. 

Next, using the solution (2.51, we find the value of the Jacobian at 

the point P,. For this we transform the expression for A to the con- 

venient form 
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A= ’ 
sin2 2mt C 

mfl’ (E) - m cos Bmtf,’ (q) + F fa” (q)] x 

X [ mfZ’ (q) - m cos 2mtf,’ (E) + SF fl” (t)] $ (3.8) 

After substituting (2.5) into (3.8) we get 

(3.9) 

Ap, = *[sin 2mt, - cos 2mt, (sin 2mt, + sin 2mt,) - sin 2mt, (cos 2mt,+ 

+ 2 sin 2mt, tg mtz + 2 sin2 mt,)] [sin 2mt, + sin 2mt, + sin 2m (t3 - ta) ] -$- 

If we fix tr and we increase t2, then tj also increases. For tl + 

n/2m the last member of the first square brackets (3.9) becomes small, 

and the second member becomes negative. It follows that for tj suffi- 

ciently close to n/2m the Jacobian at the point P, has a positive value. 

Because A in the region P,PSP6 is a continuous function on some line it 

changes sign, and that means that the condition for the existence of a 

limit line in the considered region is fulfilled. 

4. If the parameters tl and tp do not satisfy the inequality (1.9) 

and 

then the limit line is always formed to the right of the characteristic 

Vs 

In order to prove this we consider the region P$,*P4**, bounded by 

the segment of the straight line P4Pr **(t = tz) and the segments of the 

characteristic PIP,* and P4*P4**, 

drawn in such a way that at P,* 

where the characteristic P,*P,** is 

the value of the variable t is suffi- 
ciently close to n/2m (Fig. 3). 

'lhe desired functions, which determine the solution in the divided 

region, will be the functions (2.5). We shall obtain that result if we 

first solve the boundary problem in the region P,P#‘z*P,* from that 

given by (2.31, and afterwards we determine the values of $ on the cross- 

characteristic in the simple wave. 

Using (2.5), one can find the value of the Jacobian A at the point 

P,*. If t is in P,+ sufficiently close to n/2m thdn it is easy to deduce 

that at that point A will be positive. Taking into account that on P4P4** 

(the free surface) A has the opposite sign (A< 01, it is easy to see 

that the condition A= 0 is satisfied on some line. 
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